
Design Patters
Problem Solving Programming

Aamir Shabbir Pare

PareDox
Education Solutions

GRASP Design Principles

PareDox
Education Solutions

Aamir Shabbir Pare

• Stands for General Responsibility Assignment Software Patterns

• Guides in assigning responsibilities to collaborating objects.

• 9 GRASP patterns
• Creator

• Information Expert

• Low Coupling

• Controller

• High Cohesion

• Indirection

• Polymorphism

• Protected Variations

• Pure Fabrication

GRASP

PareDox
Education Solutions

Aamir Shabbir Pare

• Responsibility can be:
• Accomplished by a single object
• Or Collaboratively by a group of objects

• GRASP helps us in deciding which responsibility should be
assigned to which object/class.

• Identify the objects and responsibilities from the problem domain,
and also identify how objects interact with each other.

• Define blueprint for those objects – i.e. class with methods
implementing those responsibilities.

Responsibility

PareDox
Education Solutions

Aamir Shabbir Pare

• Who creates an Object? Or who should create a new

instance of some class?

• “Container” object creates “contained” objects.

• Decide who can be creator based on the objects

association and their interaction.

Creator

PareDox
Education Solutions

Aamir Shabbir Pare

• Consider VideoStore and Video in that store.

• VideoStore has an aggregation association with Video.

I.e, VideoStore is the container and the Video is the

contained object.

• So, we can instantiate video object in

VideoStore class

Creator Example

PareDox
Education Solutions

Aamir Shabbir Pare

Example Diagram

PareDox
Education Solutions

Aamir Shabbir Pare

Creator Example

PareDox
Education Solutions

Aamir Shabbir Pare

Creator Example

PareDox
Education Solutions

Aamir Shabbir Pare

• Given an object o, which responsibilities can be assigned to o?

• Expert principle says – assign those responsibilities to o
for which o has the information to fulfill that
responsibility.

• They have all the information needed to perform operations,

or in some cases they collaborate with others to fulfill their

responsibilities.

Information Expert

PareDox
Education Solutions

Aamir Shabbir Pare

• Assume we need to get all the videos of a

VideoStore.

• Since VideoStore knows about all the videos, we can
assign this responsibility of giving all the videos can be
assigned to VideoStore class.

• VideoStore is the information expert.

Example Information Expert

PareDox
Education Solutions

Aamir Shabbir Pare

Example Expert

PareDox
Education Solutions

Aamir Shabbir Pare

Example Expert

PareDox
Education Solutions

Aamir Shabbir Pare

• How strongly the objects are connected to each other?

• Coupling – object depending on other object.

• When depended upon element changes, it affects the dependent
also.

• Low Coupling – How can we reduce the impact of change in
depended upon elements on dependent elements.

• Prefer low coupling – assign responsibilities so that coupling remain
low.

• Minimizes the dependency hence making system maintainable,
efficient and code reusable

Low Coupling

PareDox
Education Solutions

Aamir Shabbir Pare

• Two elements are coupled, if

– One element has aggregation/composition
association with another element.

– One element implements/extends other element.

Low Coupling

PareDox
Education Solutions

Aamir Shabbir Pare

• Here class Rent knows about both VideoStore and Video
objects. Rent is depending on both the classes.

Poor Coupling Example

PareDox
Education Solutions

Aamir Shabbir Pare

Low Coupling Example
VideoStore and Video class are coupled, and Rent is coupled with
VideoStore. Thus providing low coupling.

PareDox
Education Solutions

Aamir Shabbir Pare

Controller

• Deals with how to delegate the request from the UI layer
objects to domain layer objects.

• when a request comes from UI layer object, Controller pattern
helps us in determining what is that first object that receive the
message from the UI layer objects.

• This object is called controller object which receives request
from UI layer object and then controls/coordinates with other
object of the domain layer to fulfill the request.

• It delegates the work to other class and coordinates the
overall activity.

PareDox
Education Solutions

Aamir Shabbir Pare

Controller

● We can make an object as Controller, if

– Object represents the overall system (facade controller)

Object represent a use case, handling a sequence of operations
(session controller).

–

● Benefits

–

–

–

can reuse this controller class.

Can use to maintain the state of the use case.

Can control the sequence of the activities

PareDox
Education Solutions

Aamir Shabbir Pare

Controller Example

PareDox
Education Solutions

Aamir Shabbir Pare

Bloated Controllers

Controller class is called bloated, if

– The class is overloaded with too many
responsibilities.

Solution – Add more controllers

– Controller class also performing many tasks instead
of delegating to other class.

Solution – controller class has to delegate things to
others.

PareDox
Education Solutions

Aamir Shabbir Pare

High Cohesion

● How are the operations of any element are functionally
related?

Related responsibilities in to one manageable unit.

Prefer high cohesion

Clearly defines the purpose of the element

Benefits

●

●

●

●

–

–

–

Easily understandable and maintainable.

Code reuse

Low coupling

PareDox
Education Solutions

Aamir Shabbir Pare

Low Cohesion Example

PareDox
Education Solutions

Aamir Shabbir Pare

High Cohesion Example

PareDox
Education Solutions

Aamir Shabbir Pare

Polymorphism

• How to handle related but varying elements
based on element type?

• Polymorphism guides us in deciding which
object is responsible for handling those
varying elements.

• Benefits: handling new variations will become
easy.

PareDox
Education Solutions

Aamir Shabbir Pare

Polymorphism Example
● The getArea() varies by the type of shape, so we assign

that responsibility to the subclasses.

● By sending message to the Shape object, a call will be made
to the corresponding sub class object – Circle or Triangle.

PareDox
Education Solutions

Aamir Shabbir Pare

Pure Fabrication

• Fabricated class/ artificial class – assign set of
related responsibilities that doesn't represent any
domain object.

• Provides a highly cohesive set of activities.

• Behavioral decomposed – implements some
algorithm.

• Examples: Adapter, Strategy

• Benefits: High cohesion, low coupling and can
reuse this class.

PareDox
Education Solutions

Aamir Shabbir Pare

Pure Fabrication Example

• Suppose the Shape class, if we must store the shape
data in a database.

• If we put this responsibility in Shape class, there will be
many database related operations thus making Shape
incohesive.

• So, create a fabricated class DBStore which is
responsible to perform all database operations.

• Similarly logInterface which is responsible for logging
information is also a good example for Pure Fabrication.

PareDox
Education Solutions

Aamir Shabbir Pare

Indirection

• How can we avoid a direct coupling between two or

more elements.

• Indirection introduces an intermediate unit to
communicate between the other units, so that the other
units are not directly coupled.

• Benefits: low coupling

• Example: Adapter, Facade, Obserever

PareDox
Education Solutions

Aamir Shabbir Pare

Indirection Example

● Here polymorphism illustrates indirection

Class Employee provides a level of indirection to other units of
the system.

●

PareDox
Education Solutions

Aamir Shabbir Pare

Protected Variations

• How to avoid impact of variations of some elements

on the other elements.

• It provides a well defined interface so that the there will

be no affect on other units.

• Provides flexibility and protection from

variations.

• Provides more structured design.

• Example: polymorphism, data encapsulation, interfaces

PareDox
Education Solutions

Aamir Shabbir Pare

Reference

Applying UML and Patterns, Third Edition,
Craig Larman

PareDox
Education Solutions

Aamir Shabbir Pare

Example of UML Class Diagram

