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• Stands for General Responsibility Assignment Software Patterns

• Guides in assigning responsibilities to collaborating objects.

• 9 GRASP patterns
• Creator  

• Information Expert  

• Low Coupling  

• Controller

• High Cohesion  

• Indirection

• Polymorphism  

• Protected Variations

• Pure Fabrication

GRASP
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• Responsibility can be:
• Accomplished by a single object
• Or Collaboratively by a group of objects

• GRASP helps us in deciding which responsibility should be  
assigned to which object/class.

• Identify the objects and responsibilities from the problem domain,  
and also identify how objects interact with each other.

• Define blueprint for those objects – i.e. class with methods  
implementing those responsibilities.

Responsibility
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• Who creates an Object? Or who should create  a new  

instance of some class?

• “Container” object creates “contained” objects.

• Decide who can be creator based on the  objects  

association and their interaction.

Creator
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• Consider VideoStore and Video in that store.

• VideoStore has an aggregation association  with Video. 

I.e, VideoStore is the container and  the Video is the 

contained object.

• So, we can instantiate video object in  

VideoStore class

Creator Example
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Example Diagram
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Creator Example
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Creator Example
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• Given an object o, which responsibilities can  be assigned to o?

• Expert principle says – assign those  responsibilities to o  
for which o has the  information to fulfill that
responsibility.

• They have all the information needed to  perform operations, 

or in some cases they  collaborate with others to fulfill their  

responsibilities.

Information Expert
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• Assume we need to get all the videos of a  

VideoStore.

• Since VideoStore knows about all the videos,  we can 
assign this responsibility of giving all  the videos can be 
assigned to VideoStore class.

• VideoStore is the information expert.

Example Information Expert
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Example Expert
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Example Expert
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• How strongly the objects are connected to each other?  

• Coupling – object depending on other object.

• When depended upon element changes, it affects the dependent  
also.

• Low Coupling – How can we reduce the impact of change in  
depended upon elements on dependent elements.

• Prefer low coupling – assign responsibilities so that coupling remain  
low.

• Minimizes the dependency hence making system maintainable,  
efficient and code reusable

Low Coupling



PareDox
Education Solutions

Aamir Shabbir Pare

• Two elements are coupled, if

– One element has aggregation/composition  
association with another element.

– One element implements/extends other element.

Low Coupling
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• Here class Rent knows about both VideoStore and Video  
objects. Rent is depending on both the classes.

Poor Coupling Example
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Low Coupling Example
VideoStore and Video class are coupled, and Rent is coupled with  
VideoStore. Thus providing low coupling.
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Controller

• Deals with how to delegate the request from the UI layer  
objects to domain layer objects.

• when a request comes from UI layer object, Controller pattern
helps us in determining what is that first object that receive the
message from the UI layer objects.

• This object is called controller object which receives request
from UI layer object and then controls/coordinates with other
object of the domain layer to fulfill the request.

• It delegates the work to other class and coordinates the  
overall activity.
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Controller

● We can make an object as Controller, if

– Object represents the overall system (facade controller)

Object represent a use case, handling a sequence of operations  
(session controller).

–

● Benefits

–

–

–

can reuse this controller class.

Can use to maintain the state of the use case.  

Can control the sequence of the activities
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Controller Example
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Bloated Controllers

Controller class is called bloated, if

– The class is overloaded with too many  
responsibilities.

Solution – Add more controllers

– Controller class also performing many tasks  instead 
of delegating to other class.

Solution – controller class has to delegate things  to
others.
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High Cohesion

● How are the operations of any element are functionally  
related?

Related responsibilities in to one manageable unit.  

Prefer high cohesion

Clearly defines the purpose of the element

Benefits

●

●

●

●

–

–

–

Easily understandable and maintainable.  

Code reuse

Low coupling
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Low Cohesion Example
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High Cohesion Example
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Polymorphism

• How to handle related but varying elements  
based on element type?

• Polymorphism guides us in deciding which  
object is responsible for handling those  
varying elements.

• Benefits: handling new variations will become  
easy.
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Polymorphism Example
● The getArea() varies by the type of shape, so we assign 

that  responsibility to the subclasses.

● By sending message to the Shape object, a call will be made  
to the corresponding sub class object – Circle or Triangle.
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Pure Fabrication

• Fabricated class/ artificial class – assign set of  
related responsibilities that doesn't represent  any 
domain object.

• Provides a highly cohesive set of activities.

• Behavioral decomposed – implements some  
algorithm.

• Examples: Adapter, Strategy

• Benefits: High cohesion, low coupling and can  
reuse this class.



PareDox
Education Solutions

Aamir Shabbir Pare

Pure Fabrication Example

• Suppose the Shape class, if we must store the shape  
data in a database.

• If we put this responsibility in Shape class, there will be  
many database related operations thus making Shape  
incohesive.

• So, create a fabricated class DBStore which is  
responsible to perform all database operations.

• Similarly logInterface which is responsible for logging  
information is also a good example for Pure Fabrication.
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Indirection

• How can we avoid a direct coupling between  two or 

more elements.

• Indirection introduces an intermediate unit to  
communicate between the other units, so that  the other 
units are not directly coupled.

• Benefits: low coupling

• Example: Adapter, Facade, Obserever
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Indirection Example

● Here polymorphism illustrates indirection

Class Employee provides a level of indirection to other units of  
the system.

●
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Protected Variations

• How to avoid impact of variations of some  elements 

on the other elements.

• It provides a well defined interface so that the  there will 

be no affect on other units.

• Provides flexibility and protection from  

variations.

• Provides more structured design.

• Example: polymorphism, data encapsulation,  interfaces
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Example of UML Class Diagram


